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SUMMARY.

In this paper we present applications of the new approach to the kinematic and dynamic analysis of systems of rigid bodies
presented in part 1. An extension of the method to the Lagrangian formulation of the dynamics of chains of rigid bodies is also
presented. The kinematic and dynamic analysis is performed for a generic serial manipulator either in open and closed loop. Two
numerical examples concerning an open loop and a closed loop are presented too. Two software packages based on our approach
are also briefly introduced.

1. INTRODUCTION.

This part of the paper is devoted to the presentation of the
application of the matrix approach described in part 1 of the
paper to open and closed chains of rigid bodies; moreover the
dynamics is extended to the Lagrangian formulation. We
present an analytical example that shows how to write the
kinematic and dynamic matrices of the well known Standford
Arm. A second example concerning a closed loop system is
also developed. A further example refers to a numeric
solution for the direct kinematics and the inverse dynamics of
any serial manipulator using two standard libraries written in
C and in C++ language. These software packages outline the
good correspondence between the theoretical approach of the
problem and its implementation in simulation programs. The
notation used in the following paragraphs is explained in part
1 of the paper which is assumed known to the reader. Since,
in the study of chains of rigid bodies, subscripts often assume
standard values, it is possible to use an abbreviated notation
which makes the notation more compact. In other words1

some subscripts can be omitted and we assume that
L Li i i i i− − −=1 1 1, , ( ) , W Wi i i i i− − −=1 1 1, , ( ) , H Hi i i i i− − −=1 1 1, , ( ) .

2. CHAINS OF RIGID BODIES.

2.1. GENERAL CONSIDERATIONS.

In agreement with the Denavit and Hartenberg approach, we
suppose that all the links of the system are coupled to each
                                                            
1See appendix B of part one.

other by one degree of freedom lower pairs (prismatic,
revolute or screw pairs). Then if the system has joints with
more then one degree of freedom we should simulate it by
introducing dummy bodies with one degree of freedom. In
relation to the serial manipulator of fig. 1, relative position,
speed and acceleration matrices between two contiguous
bodies h-1 and h can be expressed as a function of the joint
variable qh  and its first and second time derivatives hq&  hq&& ,

where h is the joint between the bodies. For each link h it is
possible to define the position matrix Mh-1,h describing its
position with respect to the previous link; this matrix depends
on the h-th joint variable qh . More over each velocity and
acceleration matrix relative to contiguous bodies can be
expressed as a function of matrix L, which in this case is a
sort of generalized velocities ratio matrix

Ψι

Ψι

Fig. 1: scheme of a serial manipulator.
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hhhhh q&,1,1 −− = LW  .

By remembering the relation between matrix H and L
revealed in part1 we can write

hhhhhhhh qq &&& ,1
2

,1
2

,1 −−− += LLH

L , has similar properties (base reference transformation rule)
to the correspondent matrix W  and takes, for prismatic and
screw pairs respectively,  the two forms:
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where u (unit vector) contains the direction  cosines in (k) of
the axis of the joint between the two bodies i and j,
b u t u= − + p , p is pitch of the pair, and t is the position

in (k) of an arbitrary point of the axis. u and t can be
immediately obtained from the appropriate position matrix. A
revolute joint is a screw joint having a null pitch (p=0). If the
reference frame of two subsequent bodies (h-1 and h) are
placed according to the Denavit and Hartenberg notation
vector u assumes the simple form ut t= [ , , ]0 0 1  and matrix L
is simply:

p
h hL − =1
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0 0 0 0

0 0 0 1
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,1 phh
s
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=−L  (1)

The position, speed and acceleration matrices of each body i
can be found starting from the base of the manipulator and
moving towards the end effector applying the motion
composition rule

M M M0 0 1 1, , ,h h h h= − −

W W W0 0 1 1 0, , , ( )h h h h= +− −

H H H W W0 0 1 1 0 0 1 1 02, , , ( ) , , ( )h h h h h h h= + +− − − −

where M [1]0 0, =  (identity matrix) and W H [0]0 0 0 0, ,= =
(null matrix). These equations can be generalized, for i ≥ 2
as follows:

M M0 1

1

, ,( )i j j j

j

i

q= −
=

∏

∑∑
=

−
=

− ==
i

j
jjj

i

j
jji q

1
)0(,1

1
)0(,1,0 &LWW (2)

( )[ ]

∑∑

∑

∑∑∑

=

−

=
−−

=
−−

=

−

=
−−

=
−

+

++=

=+=

i

r

r

s
rsrrss

i

j
jjjjjj

i

r

r

s
rrss

i

j
jji

qq

qq

2

1

1
)0(,1)0(,1

1
)0(,1

2
)0(,1

2

1

1
)0(,1)0(,1

1
)0(,1,0

2

2

&&

&&&

LL

LL

WWHH
(3)

The acceleration equation can be rewritten separating the
effect of the joint velocities and accelerations
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            (3bis)

In other words, H
~

 contains the Coriolis and the centrifugal
terms
The angular velocity and acceleration of the end-effector can
be extracted by the 3×3 submatrix of W0,n and H0,n (see
equations (6) and (7) of part I) while its linear velocity and
acceleration can be evaluated as

*
,0

**
,0

* PHPPWP nn == &&&

where P* is the last column of M0,n.

2.2. CLOSED LOOP SYSTEMS.

If the system contains closed loops, three constraint matrix
equations (for position, velocity and acceleration) can be
written for each loop. These equations can be obtained by
thinking of a loop as an open chain with the first and the last
body coinciding (n ≡  0):

M M M M M [1]0 0 1 1 2 1 0 0, , , , ,.......n n n= = =− (4)

W W W W W [ ]0 0 1 1 2 0 1 0 0 0, , , ( ) , ( ) ,........n n n= + + + = =− 0  (5)

H H H W W H0 0 1 1 2 0 0 1 1 2 0 0 02, , , ( ) , , ( ) ,.....n = + + + = = [0]  (6)

where [1]  is the identity matrix, and [0] the null one and all
W and H matrices must be evaluated in the same reference.

Due to the particular  structure of the matrices involved (only
6 elements of each are independent), each of the equations
(4,5,6) is equivalent to a scalar system of 6 equations with
the n unknowns ( iii qqq &&&  , , ). If the loop contains less than 6

joints and in special cases, some of the equations can depend
on each other.

The position equation is non linear while the others are linear
in iq&  or iq&& . Equations (5, 6) can easily be built using L

matrices, for example the former should be writen in frame
(0) as

.[0]L =∑
=

−

n

i
iii q

1
)0(,1 &  (7)

Remembering that the independent components of matrix Li

are

Li
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the linear system [0]qA =&  obtained from Eq. 7 is
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We have six equations for each loop and a number of
unknown equal to the number of the joints. The degree of
mobility of the loop (i.e. d.o.f.) is the difference between the
number of the joints and the independent equations (the rank
of matrix A).

The acceleration equation of each loop can be built by eq. 6
using L matrices (eq. 3). It is represented by the system

bqA =&&  where the coefficient matrix A is identical to the

coefficient matrix A of the velocity equation system. In fact
this equation system can be also obtained deriving the
velocity equation system with respect to time

0=qA & obtaining qAqA &&&& −= , indeed qAb &&−= .

Moreover the coefficient matrix A obtained in this way from
Eq. 5, 6 is identical; b contains the Coriolis and the

centrifugal terms extracted from H
~

 of eq. (3bis). In fact eq.

(6) can be rewritten as HL
~

−=∑ q&&  Finally the position

system must be solved before the others, while the velocities
system must be solved before that of the accelerations.

2.3. NEWTON-EULER DYNAMICS.

The dynamics of an open chain of rigid bodies can be
developed starting from the above equation and applying the
usual principles (virtual works, momentum and angular
momentum conservation, etc.). For example the joint action
ΨΨi  between the bodies i-1 and i of an open  chain (see fig. 1)
can  be simply obtained by a dynamic equilibrium. In other
words ΨΨi  is just the sum of all the actions (including weight
and inertia) applied to body i,i+1,..n:

( )[ ]∑
=

ΦΦ+=Ψ
n

ij
jjjji skew )0()0()0(,0)0(

ˆ ++JH

where H0, j  is the absolute acceleration of the body j, J j( )0  is

its pseudo-inertial tensor referred to an inertial frame (0),

)0(
ˆ

jΦ is the weight action matrix, and ΦΦj( )0   is the resultant

external action applied to the body, and the skew operator is
defined in part one, paragaph 4.6. The joint actions can be
also evaluated iteratively starting from joint n using the
recursive formula

ΨΨ == ΨΨi i i i g i iskew skew− + + +1 0 0 0 0 0 0 0( ) ( ) , ( ) ( ) ( ) ( )( ) ( )H J H J Φ

3. LAGRANGIAN DYNAMICS.

The matrix approach introduced allows the writing of the
dynamics equation of a system of rigid bodies following
Lagrange's method by means of the general equation

i
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Q
qqdt

d
=−

∂
∂

∂
∂ LL
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where the Lagrange quantityL is calculated as the difference

between the kinetic and potential energy (L = t-v) and Qi  is
the generalized components of force along qi .

The kinetic energy of a body h is expressed as a function of
velocity and inertia matrix by means of the trace operator (see
note 3 of part one)

th h h h
tTrace=

1

2 0 0 0( ), ( ) ,W J W (8)

while the potential energy due to the gravitational effect is
expressed by

vph g hTrace= −( )( ) ( )H J0 0 (9)

We will develop Lagrange's formulation for the chain of rigid
bodies dividing the effects due to the kinetic and potential
energy. For the solution of the former we must obtain the
derivatives of matrices used in relation (8) with respect to
time t, to the coordinate qm  and mq& . The basic step is to

derive the position matrix from which we can obtain the other
derivatives. Starting from P P,0 0 1 1= M  the time derivative

yields 
d
dt

d

dt
P

P,0 0 1
1=

M
 where P1  is constant with respect to t

(i.e. P1  is embedded on frame 1). Recalling the relation

between the velocity of the point of the body and matrix W,
and the transformation of frame reference of the point we can

write 
d
dt

d

dt
P

P P,
,

,
0

0 1 0
0 1

1 0 0= =W
M

M  so that

d

dt

M
W M0 1

0 1 0 1
,

, ,= . The derivative of the position matrix

with respect to qm  can be found remembering that matrix L
represents an infinitesimal transformation and each column of
matrix M is a particular point (points at infinity of the axis
and the origin) of the frame, so we can write
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where H
~

 is the acceleration matrix calculated for 0=q&& ,
which depends on position and velocity and represents the
Coriolis and centrifugal effects:
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The solution of the last is
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The complete dynamic equation is given by the sum of the
two preceding relations.

For the determination of the generalised components of force
from the action matrix ΦΦ  we introduce a pseudo scalar
product ⊗  so that

Qm i
i

N

m( ) ( ) ( )( ) .0 0
1

0= ⊗
=
∑ΦΦ L (10)

The pseudo scalar product between two 4x4 matrices is
defined as follows

A B A B A B A B

A B A B A B

⊗ = + + +

+ + +

[ , ] * [ , ] [ , ] * [ , ] [ , ] * [ , ]

[ , ] * [ , ] [ , ] * [ , ] [ , ] * [ , ]

3 2 3 2 1 3 1 3 2 1 2 1

1 4 1 4 2 4 2 4 3 4 3 4

where A[ , ]i j  and B[ , ]i j  are the elements of position i,j of
matrices A and B. In the case of the eq.  (10) it yields:

Q c u c u f bm x x y y z z= + + +........

that is, the components of the resulting action ΦΦi∑  onto the

displacement permitted by the joint m described by matrix
Lm .

For open chain systems the summation in eq. (10) starts from
m instead of 1 because only the action applied to the link
with label greater then m work for an infinitesimal variation
of qm .

It is possible to show that the dynamic equation of the system
can be written in the following matrix form

)(),( tqqq FC =+ &&&M

where M is the mass matrix, C a vector holding the weight,
centrifugal and Coriolis effects, F a vector containing the
components on the joint coordinates of the forces and torques
applied to the manipulator (including the actuators actions).
F depend on the time. The elements of the mass matrix
(which is symmetric and positive defined) are given by the
relation

M[ , ] [ ]( ) ( ) ( )
max( , )

i m Trace i h m
t

h i m

N

=
=
∑L J L0 0 0

while the elements of vector C and F are

∑∑ Φ⊗−
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F[i] = action (force or torque) on i-th joint.

A comparison between this methodology with those presented
in [40] allows a better understanding  of the meaning of
coefficient D D Di ij ijk,  ,   there presented as the result of

mathematical derivation and whose meaning can be
explained in term of W, H, L and J matrices.

4. OPEN LOOP EXAMPLE.

In order to show the practical use of our methodology,  let us
consider the problem of writing the kinematic and dynamic
equations of the STANDFORD ARM, having six degrees of
freedom with five revolute joints and one prismatic, whose
initial position is drawn in fig. 2. The kinematics section
describes how you can write the position matrices, the
relative and absolute velocity and acceleration matrices,
while the dynamics section describes how to write the inertia
matrix and the dynamic equilibrium. We describe the joint

space coordinates by the vector Q = ϑ ϑ ϑ ϑ ϑ1 2 3 4 5 6, , , , ,d
t
.

4.1. KINEMATICS.

In this example the reference frames of the links are placed
according to Denavit and Hartenberg. Then the matrices that
describe the relative position matrices of the links are

M0 1

1 1

1 1

0 0

0 0

0 1 0 0

0 0 0 1

, =

−

−

C S

S C

 

M1 2

2 2

2 2

2

0 0

0 0

0 1 0

0 0 0 1

, =
−

C S

S C

d

M2 3
3

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

, =
d

 

M3 4

4 4

4 4

4

0 0

0 0

0 1 0

0 0 0 1

, =

−

−

C S

S C

d

M4 5

5 5

5 5

0 0

0 0

0 1 0 0

0 0 0 1

, =
−

C S

S C

 

M5 6

6 6

6 6

0 0

0 0

0 0 1 0

0 0 0 1

, =

−C S

S C

Fig. 2: The STANDFORD ARM.
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where Ci i= cos( )ϑ  and S sini i= ( )ϑ . The absolute position
matrix of any link of the robot can be evaluated as usual as

M M M M0 0 1 1 2 1, , , ,....i i i= −

Matrices L in relative frame have the form pL  for prismatic
joints and rL  for revolute joints as shown in eq.(1).
Remembering the relation between matrices W, H and L the
relative velocity and acceleration matrices between
contiguous links with revolute pairs, joints i=1,2,4,5,6 in our
example, are

0000

0000

000

000

)1(,1
i

i

iii
q

q
&

&−

=−−W

0000

0000

00

00
2

2

)1(,1
ii

ii

iii
qq

qq
&&&

&&&

−
−−

=−−H

and for the prismatic pair, joint 3 in Fig 2, are

0000

000

0000

0000

3
)2(3,2 q&

=W       

0000

000

0000

0000

3
)2(3,2 q&&

=H

where qi  is  the i-th free coordinate of the joint and qq &&&  ,  its
time derivatives.

To obtain the absolute velocity and acceleration matrices of
the links we use the velocity composition rule and the
Coriolis theorem,

W W W0 0 0 1 0 1 0, ( ) , ( ) , ( )j j j j= +− −  (11)

H H W W H0 0 0 1 0 0 1 0 1 0 1 02, ( ) , ( ) , ( ) , ( ) , ( )j j j j j j j= + +− − − −

in which the relative velocity and acceleration matrices are
referred to the absolute frame (0). We can easily calculate
these matrices by means of matrices L

iiiii q&)0(,1)0(,1 −− = LW

22
)0(,1)0(,1)0(,1 iiiiiiii qq &&& −−− += LLH

Matrices L can be referred in the absolute frame (0) using the
following relation

L M L Mi i i i i i− − − −
−=1 0 0 1 1 0 1

1
, ( ) , , , .

For link 1 M I0 0, [ ]=  (the identity matrix), so the absolute

velocity and acceleration matrices are the same as the relative
ones, W W0 1 0 0 1, ( ) ,=  and H H0 1 0 0 1, ( ) ,= .

 The relative velocity and acceleration matrices between links
1 and 2 can be referred to the absolute frame by the relation

2)0(2,1
1
1,02,11,0)0(2,1 q&LMWMW == −

L M L M1 2 0 0 1 1 2 0 1
1

1

1

1 1

0 0 0

0 0 0

0 0

0 0 0 0

, ( ) , , ,= =
− −

−

C

S

C S

=+= 2
2

2
)0(2,12)0(2,1)0(2,1 qq &&& LLH

2
2

2
111

11
2

1

2
11

1

1

0000

0100

00

00

0000

00

000

000

qSSC

SCC

q
SC

S

C

&&&
−

−−
−−

+
−−

=

The evaluation of the velocity  and acceleration matrices of
the other links (3, 4, 5 and 6) is executed in the same way. As
a further explanation, let us show matrices
L W H2 3 0 2 3 0 2 3 0, ( ) , ( ) , ( ), ,  which are

L2 3 0

1 1

1 2

2

0 0 0

0 0 0

0 0 0

0 0 0 0

, ( ) =

C S

S S

C

3)0(3,2)0(3,2 q&LW =  3)0(3,2)0(3,2 q&&LH =

The formula for H2 3 0, ( ) is very simple because the 3rd  joint is

prismatic and so L2 3 0
2

, ( )  reduces to the null matrix.

The absolute velocity and  acceleration matrix of the other
links of the manipulator can be easily obtained by using
formulas (11) recursively.

4.2. DYNAMICS.

Remembering the first part of the paper, the inertial action

matrix )0(
~

iΦ  of the link i in absolute frame is found using

the dynamic equilibrium equation, that reads

)(
~

)0()0(,0)0( iii Skew JH−=Φ

where H0 0, ( )i  is the absolute acceleration matrix (calculated in

the preceding section), and Ji( )0 is the absolute inertia matrix

which is obtained from the inertia matrix of the link i in the
local frame by the transformation J M J Mi i i i i

t
( ) , ( ) ,0 0 0= . It is

important to note that the inertia of the link is constant if
evaluated with respect to its local frame but it varies if
expressed in the global reference frame. In other words  Ji i( )

in constant while Ji( )0  depend on the robot motion. Let us

consider the problem of building the inertia matrix of any
link i in the local frame.

Ji i

xx xy xz g

yx yy yz g

zx zy zz g

g g g

I I I mx

I I I my

I I I mz

mx my mz m

( ) =

This matrix can immediately be built knowing the mass m,
the "usual" inertia moments J J J J J Jx y z xy yz xz,  ,  ,  ,  ,   referred

to the center of mass and the  position x y zg g g,  ,   of the center

of mass of the link.

The weight action matrix Φ̂  may be evaluated by means
of the gravity acceleration matrix, inertia matrix and the Skew
operator by the formula

.)(ˆ
)0()0()0( igi Skew JH==Φ

The total action matrix ΦΦ0,i  on each link can be found

starting from the end effector, the only link on which the
external force acts (known), calculating the inertial action
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matrix, summing the total action matrix of the  successive
link and summing the weight action matrix

iiii Φ+Φ+Φ=Φ +
ˆ~

1

It's very hard to write the dynamic relation of the manipulator
in fig. 2 in symbolic form, so this part is presented only in
numeric form in section 6 which outlines the easy
implementation of the presented formulation.

5. CLOSED LOOP EXAMPLE.

In this section we present an application of the methodology
applied to the closed loop system in fig. 3, writing the
kinematic and dynamic equations. We describe the joint
space coordinate by the vector Q = α α α1 2 3, , ,a .  Using the

local frame of the fourth link shown in fig. 3 and letting
ci i= cos( )α  and s sini i= ( )α  the relative  position matrices
are:

M0 1

1 1 1 1

1 1 1 1

0

0

0 0 1 0

0 0 0 1

, =

−c s l c

s c l s
 M1 2

2 2 2 2

2 2 2 2

0

0

0 0 1 0

0 0 0 1

, =

−c s l c

s c l s

M2 3

3 3

3 3

0 0

0 0

0 0 1 0

0 0 0 1

, =

−c s

s c
 M3 4

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, =

−a

Applying the position equation 4 yields:

cos -sin

sin cos

( ) ( ) cos( ) cos( )

( ) ( ) ( ) ( )

α α α α α α α α α
α α α α α α α α α

1 2 3 1 2 3 1 1 2 1 2

1 2 3 1 2 3 1 1 2 1 2

0

0

0 0 1 0

0 0 0 1

+ + + + + + −
+ + + + + +

=

l l a

l sin l sin

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

This matrix system is equivalent to
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The first and the second equations are equivalent to the
relation

α α α π1 2 3 2+ + = k

so that the system is described by 3 independent equations
with 4 unknowns (α α α1 2 3, , ,a ), indeed the system has just
one degree of freedom.

For the analysis of velocity and acceleration of the system we
build the L matrices in local frame:

L L L0 1 1 2 2 3

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

, , ,= = =

−

 

L3 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

, =

Matrices L can be referred in the absolute frame (0) using the
following relation

L M L Mi i i i i i− − − −
−=1 0 0 1 1 0 1

1
, ( ) , , ,

Appling the equation 7 to this closed loop system we have

[0]LLLL =+++ a&&&& )0(0,33)0(3,22)0(2,11)0(1,0 ααα

from which, remembering that L matrices have six
independent  elements, the system [0]A =q&  of paragraph 2.2
reduces to
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is equivalent to 3 equations with 4 unknowns. Note that the
position system equations outline the geometrical relations
(see fig. 3)

 l sin l sin1 1 2 1 2 0( ) ( )α α α+ + =

l l a1 1 2 1 2cos( ) cos( )α α α+ + =

that can be used to simplify matrix A.

The accelerations of the bodies of the mechanism can be
obtained by equations 6 and 3.  For the mechanism of fig. 3
we have
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= =

−

=
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1

1
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2)(
i r

r

s
rsrrssiii qqq

a

&&&
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and the acceleration equations system, bqA =&&  becames

Fig. 3: Slider crank mechanism.
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where the matrix coefficient is equal to the matrix coefficient
of the velocity equations system, and the first time derivatives
of the free coordinates in the right side are calculated by the
velocity equations system.

6. NUMERICAL APPLICATION.

The proposed methodology appears to be very suitable for
computer applications because the operations required  for
coding a program can be defined very easily. For this reason a
software library called SPACE_LIB has been realised [21]. A
complete sample program (fig.4) for the direct kinematics
and the inverse  dynamics of any serial  manipulator
highlights the power of the methodology.

The program is presented just with the aim of showing how
to use the presented methodology. The simulation programs
can be written using few standard statements as well a few
calls to standard general purpose functions.

The program, whose source code consists of less then 100
lines of listing, is composed of four parts.

The first part is devoted to the declaration of the variables
and to the input data phase (kinematic and dynamic
characteristics of the robot in hand).

The second part is the Kinematics part, consisting of a simple
loop performing the following iterative operations:

• reads the joints motion (step 2), builds relative position
matrices A (step 3) and the relative velocity and
acceleration matrices by means L matrix (step 4)

• evaluates the absolute position M0 of each link (according
to D.&H. method) using the formula M0 M0 A0 0 1 1, , ,i i i i= − −

(step 5)

• transforms the relative velocity and acceleration matrices
from local to the absolute frame (0) (step 6-7)

W M0 W M0i i i i i i− −
−=1 0 0 1 0

1
, ( ) , , ,

H M0 H M0i i i i i i− −
−=1 0 0 1 0

1
, ( ) , , ,

• evaluates the absolute speed of each link by summing the
drag and the relative  speed of each link (step 8)

W W W0 0 1 1 0, , , ( )i i i i= +− −

• evaluates of the absolute acceleration of  each link by
means the Coriolis' theorem (step 9)

H H H W W0 0 1 1 0 0 1 1 02, , , ( ) , , ( )i i i i i i i= + +− − − −

t = =0 0 0; ;,M [1]
W [0] H [0]0 0 0 0, ,;= =
read robot description

(1)

↓


→ 

i = 1
starts from first link

(the nearest to the base)
 ↓



→


read relative motion (position, speed and
acc.) of joint i at time t.

(2)

  ↓






evaluate rel. position, vel. and acc.
A W Hi i i i i i− − −1 1 1, , ,, ,

(3,4)

↑ ↑ ↓






evaluate absolute position of link i
M0 M0 A0 0 1 1, , ,i i i i= − −

(5)

  ↓










refer W and H to base frame (0)
W M0 W M0i i i i i i− − − −

−=1 0 0 1 1 0 1
1

, ( ) , , ,

H M0 H M0i i i i i i− − − −
−=1 0 0 1 1 0 1

1
, ( ) , , ,

(6,7)

  ↓






evaluate absolute speed  of link i
W W W0 0 1 1 0, , , ( )i i i i= +− −

(8)

  ↓






evaluate absolute acceleration of link i
H H H W W0 0 1 1 0 0 1 1 02, , , ( ) , , ( )i i i i i i i= + +− − − −

(9)

 ↑ ↓
 i=i+1 ←yes i < number of link
 ↓ no






i = n
start from the last link, the nearest to the

end-effector

Φ=Ψ +
~

1n

extern act. on end-effector

(10)

 ↓






→ refer inertia matrix to absolute frame (0)
J M J Mi i i i

t
( ) , ,0 0 1 0 1= − −

(11)

  ↓







evaluate inertia and weight action on link
i

Φi i g iSkew( ) , ( ) ( )( )0 0 0 0= − −H H J

(12)

  ↓
↑


↑ evaluate the constrain action on joint i
Ψ Φ Ψi i i( ) ( ) ( )0 0 1 0= + +

(13)

  ↓
 i=i-1 ←yes  i > 1
 ↓ no

t=t+dt ←yes   t < tmax
↓ no

stop

Fig. 4: Flow chart of a program for the direct kinematics
and inverse dynamics of a serial manipulator. Numbers in
parentheses refers to the program list of fig.6.
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The third part is the Dynamic analysis, which consists of the
evaluation of the inertial actions applied to each link and of
the joint reactions, simply by summing all the actions applied
to the links which follow the considered  joint.

The fourth part is devoted to the output of the calculated
matrices.

Another software library, CHAIN++ [24], has been developed
for writing simulation programs in the C++ language. This
engine defines several mathematical classes that describe the
matrices presented in this paper and operations on them.
Moreover it defines the class LinkObject, that encapsulates
all the matrices needed to define the data structure describing
a rigid body and has the methods working on it, and the class
ChainObject a collection of objects LinkObject. In fig. 5 we
present an excerpt of a C++ program, performing the
kinematic loop previously described, that outlines the
representation of the matrix operation and the compact code
obtained.

To people not familiar to C++ language we can say that this
language offers the possibility to define new types  of
variables and the modalities to operate on them. For example
we have defined a number of  special types of 4x4 matrices
and special functions to operate on them for standard
operation required by our methodology (e.g. transformations).
More over the meaning of some standard operators like '+' or
'*' has been "overridden" to have the possibility of using it
also in matrix operations.

7. NOTES ON COMPUTATIONAL COMPLEXITY.
The presented methodology can be easily utilized to write
simulation software. The resulting programs are generally
quite compact if they are written using specialized libraries
like spacelib or chain++. These libraries have been developed
taking into account the special properties of each matrix
obtaining a quite efficient code. For example there is a
special function to invert the position matrices developed
taking into accounts it particularities (see part 1, paragraph

2.2).

Although a precise determination of the computational
complexity has not been performed we guess that an average
programmer can write programs whose computational
complexity is close to the minimum. However as the
presented examples suggest the time necessary to write the
programs is quite short.

8. CONCLUSIONS.

The presented applications of the matrix approach show how
it can be easily adopted to write the kinematics and dynamics
equation of a chain of rigid bodies.

For simple mechanisms the equation can be directly
developed analytically while for more complicated chains of
rigid bodies they can be easily translated into application
programs. With the use of a standard library (such as
SPACELIB or CHAIN++) performing the basic matrix
operation required by our notation, these application
programs are very short and assume very simple forms.

In summary, the presented methodology is a convenient tool
both for analytical and numerical analysis of the system of
rigid bodies.

9. APPENDIX.
9.1. DERIVATIVES OF M−1  WITH RESPECT TO TIME.

The time derivatives of the invers of a position matrix can be
found by deriving with respect to time the equation

MM [1]− =1

which becomes 
d
dt

d
dt

M
M M

M
[0]

1
−

−

+ =1  and so

d
dt

d
dt

M
M

M
M

−
− −= −

1
1 1

9.2. DERIVATIVES OF Li( )0  WITH RESPECT TO TIME.

Starting from the transformation of the reference of matrix
L M L Mi i i m( ) , ,0 0 1 0 1

1= − −
− , and differentiating respect to time t

we have 
d

dt

d

dt

d

dt
i i

i i i i
iL M

L M M L
M( ) ,

, ,
,0 0 1

0 1
1

0 1
0 1

1

= +−
−

−
−

−
−

,

but 
d

dt
i

i i

M
W M0 1

0 1 0 1
,

, ,
−

− −= and 
d

dt
i

i i
M

M W0 1
1

0 1
1

0 1
,

, ,
−

−

−
−

−= −  so

we can write 
d

dt
i

i i i i

L
W L L W( )

, ( ) ( ) ,
0

0 1 0 0 0 1= −− − .

10. REFERENCES.

All the references are quoted at the end of part 1 of the paper.

...
ifstream motion("data");
...
while(TRUE)
{
// KINEMATIC LOOP
for(int i=1;i<=nlink;i++)
{
// Read motion
motion >> q >> qp >> qpp;
if(motion.eof()) exit(0);

// build rel. pos., vel., acc. matrices
A[i].SetUp(jtype[i],theta[i],s[i],b[i],a[i],

 alfa[i],q);
W[i].SetUp(jtype[i],qp);
H[i].SetUp(jtype[i],qp,qpp);

// evaluate abs. position matrix
M0[i] = M0[i-1]*A[i];
// evaluate rel. vel. and acc. matrices in (0)
W0[i] = W[i].ChangeRef(M0[i-1]);
H0[i] = H[i].ChangeRef(M0[i-1]);

// evaluate abs. vel. matrix
WA[i] = WA[i-1] + W0[i];
// evaluate abs. acc. matrix (Coriolis' theorem)
HA[i] = HA[i-1] + H0[i] + 2*WA[i-1]*W0[i];

}

// DYNAMIC LOOP
.........

}

Fig. 5: C++ language example of kinematic loop.
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/* program for direct kinematics and inverse dynamics of ANY serial robot v.2
Developed on MS-DOS operative system with Microsoft C compiler V. 5.10 */

#include <stdio.h>
#include <math.h>
#include "spacelib.h"

main(int argc,char *argv[])
{
#define MAXLINK 10               /* max number of links */
int nlink,jtype[MAXLINK];        /* n.links;  joint type */
float theta[MAXLINK],s[MAXLINK];    /* Extended D.&H. parameters */
float b[MAXLINK],a[MAXLINK],alfa[MAXLINK];
float m,jxx,jxy,jxz,jyy,jyz,jzz,xg,yg,zg;      /* dynamics parameters */
float q,qp,qpp;                                 /* joint variables */
float gx,gy,gz;                                /* gravity acceleration */
float fx,fy,fz,cx,cy,cz;  /* external forces and torques on end-effector */
FILE *data;                         /* file including robot parametres */
FILE *motion;                   /* file including actuator motions */
int i;                                                      /* counter */
int ierr;                                                /* error code */
float t,dt;
if(argc!=3) exit(1);     /* check of input data */
data=fopen(argv[1],"r");    if(data==0) exit(2);
motion=fopen(argv[2],"r");  if(motion==0) exit(3);

/* define 4x4 matrices */
MAT4 A[MAXLINK], M0[MAXLINK]; 
MAT4 W[MAXLINK], W0[MAXLINK], WA[MAXLINK];

 MAT4 H[MAXLINK], H0[MAXLINK], HA[MAXLINK];
MAT4 J[MAXLINK], J0[MAXLINK];
MAT4 FI[MAXLINK],ACT0[MAXLINK+1], EXT, Hg, Ht;
MAT4 TMP;                                          /* temporary matrix */
                                                                /* step (1) */
idmat4(M0[0]); clear4(WA[0]); clear4(HA[0]);   /* INITIALIZATION of matrices */

  /* READ ROBOT DESCRIPTION */

fscanf(data,"%d",&nlink);                                    /* n. of links */
for (i=1;i<=nlink;i++) /* for each link */

 {  fscanf(data,"%d %f %f %f %f %f",                    /* D.&H. parameters */
           &jtype[i],&theta[i],&s[i],&b[i],&a[i],&alfa[i]);
    fscanf(data,"%f %f %f %f %f %f %f",                     /* dynamic data */
          &m,&jxx,&jxy,&jxz,&jyy,&jyz,&jzz);
    fscanf(data,"%f %f %f",&xg,&yg,&zg);
    jtoJ(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg,J[i]);    /* build inertia matrix */
 }
fscanf(data,"%f %f %f",&gx,&gy,&gz);    /* read gravity acceleration vector */
gtom(gx,gy,gz,Hg);                    /* build gravity acceleration matrix */

for(t=0;;t+=dt) /* for each instant of time */
 {                                               

/* ***** KINEMATICS *****  */
  for (i=1;i<=nlink;i++) /* for each link */
  { ierr=fscanf(motion,"%f %f %f",&q,&qp,&qpp);         /* read motions (2) */
    if (ierr!=3) goto end_motion;  /* end of data in file MOTION */
                                      /* build relative position matrix (3) */
    dhtom(jtype[i],theta[i],s[i],b[i],a[i],alfa[i],q,A[i]);
    velacctoWH(jtype[i],qp,qpp,W[i],H[i]);   /* build relative velocity
                                 and acceleration matrix in local frame (4) */

    molt4(M0[i-1],A[i],M0[i]);       /* evaluate absolute position matrix (5) */

    trasf_mami(W[i],M0[i-1],W0[i]);   /* transform relative velocity matrix
                                        from local frame to base frame  (6) */
    trasf_mami(H[i],M0[i-1],H0[i]); /* transform relative acceleration matrix
                                    from  local  frame  to  base frame  (7) */
    sum4(WA[i-1],W0[i],WA[i]);    /* evaluate absolute velocity matrix  (8) */
                               /* evaluate absolute acceleration matrix (9) */
    coriolis(HA[i-1],H0[i],WA[i-1],W0[i],HA[i]);
  }

/* ***** DYNAMICS ***** */
                                                   /* initializations  (10) */
                                   /* read external actions on end-effector */
  fscanf(data,"%f %f %f %f %f %f",&fx,&fy,&fz,&cx,&cy,&cz);
  actom(fx,fy,fz,cx,cy,cz,EXT);             /* build external action matrix */
  trasf_mamt4(EXT,M0[nlink],ACT0[nlink+1]);  /* transforms external actions
                                                   from local to base frame */
  for(i=nlink;i>0;i--) /* for each link */
  { trasf_mamt4(J[i],M0[i],J0[i]);               /* transform inertia matrix
                                             from local to base frame  (11) */
    rmolt4(HA[i],-1.,TMP);            /* change sign to find inertia action */
    sum4(TMP,Hg,Ht);                  /* evaluate total acceleration matrix */
    skew4(Ht,J0[i],FI[i]);                    /* evaluate the action matrix
                                             due to inertia and weight (12) */
    sum4(FI[i],ACT0[i+1],ACT0[i]);     /* evaluate total action matrix (13) */
   }

/* ***** OUTPUT RESULTS ***** */
for(i=1;i<=nlink;i++) /* for each link */
   { printf("\n\n Link %d \n\n",i);
     printm4("rel. pos. matrix",A[i]);
     printm4("abs. pos. matrix",M0[i]);
     printm4("rel. vel. matrix in frame (i)",W[i]);
     printm4("rel. vel. matrix in frame (0)",W0[i]);
     printm4("absolute velocity matrix in frame (0)",WA[i]);
     printm4("rel. acc. matrix in frame (i)",H[i]);
     printm4("rel. acc. matrix in frame (0)",H0[i]);
     printm4("absolute acceleration matrix in frame (0)",HA[i]);
     printm4("inertia matrix in frame (i)",J[i]);
     printm4("inertia matrix in frame (0)",J0[i]);
     printm4("total actions",FI[i]);
     printm4("action on joint i",ACT0[i]);
   }
}
end_motion: exit(0);}  /*  end main  */

_______________________________________________________________________________________________________________________________________________________

Fig. 6: C language program for the direct kinematic and inverse dynamic analysis of ANY serial manipulator. Numbers in parenteses refer to the flow chart of Fig. 4
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/* program for direct kinematics and inverse dynamics of ANY serial robot v.2 Developed on MS-DOS operative system
with Microsoft C compiler V. 5.10 */

#include <stdio.h>
#include <math.h>
#include "spacelib.h"

main(int argc,char *argv[])
{
#define MAXLINK 10               /* max number of links */
int nlink,jtype[MAXLINK];        /* n.links;  joint type */
float theta[MAXLINK],s[MAXLINK];    /* Extended D.&H. parameters */
float b[MAXLINK],a[MAXLINK],alfa[MAXLINK];
float m,jxx,jxy,jxz,jyy,jyz,jzz,xg,yg,zg;      /* dynamics parameters */
float q,qp,qpp;                                 /* joint variables */
float gx,gy,gz;                                /* gravity acceleration */
float fx,fy,fz,cx,cy,cz;  /* external forces and torques on end-effector */
FILE *data;                         /* file including robot parametres */
FILE *motion;                   /* file including actuator motions */
int i;                                                      /* counter */
int ierr;                                                /* error code */
float t,dt;
if(argc!=3) exit(1);     /* check of input data */
data=fopen(argv[1],"r");    if(data==0) exit(2);
motion=fopen(argv[2],"r");  if(motion==0) exit(3);

/* define 4x4 matrices */
MAT4 A[MAXLINK], M0[MAXLINK];
MAT4 W[MAXLINK], W0[MAXLINK], WA[MAXLINK];

 MAT4 H[MAXLINK], H0[MAXLINK], HA[MAXLINK];
MAT4 J[MAXLINK], J0[MAXLINK];
MAT4 FI[MAXLINK],ACT0[MAXLINK+1], EXT, Hg, Ht;
MAT4 TMP;                                          /* temporary matrix */
                                                                /* step (1) */
idmat4(M0[0]); clear4(WA[0]); clear4(HA[0]);   /* INITIALIZATION of matrices */

  /* READ ROBOT DESCRIPTION */

fscanf(data,"%d",&nlink);                                    /* n. of links */
for (i=1;i<=nlink;i++) /* for each link */

 {  fscanf(data,"%d %f %f %f %f %f",                    /* D.&H. parameters */
           &jtype[i],&theta[i],&s[i],&b[i],&a[i],&alfa[i]);
    fscanf(data,"%f %f %f %f %f %f %f",                     /* dynamic data */
          &m,&jxx,&jxy,&jxz,&jyy,&jyz,&jzz);
    fscanf(data,"%f %f %f",&xg,&yg,&zg);
    jtoJ(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg,J[i]);    /* build inertia matrix */
 }
fscanf(data,"%f %f %f",&gx,&gy,&gz);    /* read gravity acceleration vector */
gtom(gx,gy,gz,Hg);                    /* build gravity acceleration matrix */

 for(t=0;;t+=dt) /* for each instant of time */
 {                                               

/* ***** KINEMATICS *****  */
  for (i=1;i<=nlink;i++) /* for each link */
  { ierr=fscanf(motion,"%f %f %f",&q,&qp,&qpp);         /* read motions (2) */
    if (ierr!=3) goto end_motion;  /* end of data in file MOTION */
                                      /* build relative position matrix (3) */
    dhtom(jtype[i],theta[i],s[i],b[i],a[i],alfa[i],q,A[i]);
    velacctoWH(jtype[i],qp,qpp,W[i],H[i]);   /* build relative velocity
                                 and acceleration matrix in local frame (4) */

    molt4(M0[i-1],A[i],M0[i]);       /* evaluate absolute position matrix (5) */

    trasf_mami(W[i],M0[i-1],W0[i]);   /* transform relative velocity matrix
                                        from local frame to base frame  (6) */
    trasf_mami(H[i],M0[i-1],H0[i]); /* transform relative acceleration matrix
                                    from  local  frame  to  base frame  (7) */
    sum4(WA[i-1],W0[i],WA[i]);    /* evaluate absolute velocity matrix  (8) */
                               /* evaluate absolute acceleration matrix (9) */
    coriolis(HA[i-1],H0[i],WA[i-1],W0[i],HA[i]);
  }

/* ***** DYNAMICS ***** */
                                                   /* initializations  (10) */
                                   /* read external actions on end-effector */
  fscanf(data,"%f %f %f %f %f %f",&fx,&fy,&fz,&cx,&cy,&cz);
  actom(fx,fy,fz,cx,cy,cz,EXT);             /* build external action matrix */
  trasf_mamt4(EXT,M0[nlink],ACT0[nlink+1]);  /* transforms external actions
                                                   from local to base frame */
  for(i=nlink;i>0;i--) /* for each link */
  { trasf_mamt4(J[i],M0[i],J0[i]);               /* transform inertia matrix
                                             from local to base frame  (11) */
    rmolt4(HA[i],-1.,TMP);            /* change sign to find inertia action */
    sum4(TMP,Hg,Ht);                  /* evaluate total acceleration matrix */
    skew4(Ht,J0[i],FI[i]);                    /* evaluate the action matrix
                                             due to inertia and weight (12) */
    sum4(FI[i],ACT0[i+1],ACT0[i]);     /* evaluate total action matrix (13) */
   }

/* ***** OUTPUT RESULTS ***** */
for(i=1;i<=nlink;i++) /* for each link */
   { printf("\n\n Link %d \n\n",i);
     printm4("rel. pos. matrix",A[i]);
     printm4("abs. pos. matrix",M0[i]);
     printm4("rel. vel. matrix in frame (i)",W[i]);
     printm4("rel. vel. matrix in frame (0)",W0[i]);
     printm4("absolute velocity matrix in frame (0)",WA[i]);
     printm4("rel. acc. matrix in frame (i)",H[i]);
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     printm4("rel. acc. matrix in frame (0)",H0[i]);
     printm4("absolute acceleration matrix in frame (0)",HA[i]);
     printm4("inertia matrix in frame (i)",J[i]);
     printm4("inertia matrix in frame (0)",J0[i]);
     printm4("total actions",FI[i]);
     printm4("action on joint i",ACT0[i]);
   }
}
end_motion: exit(0);}  /*  end main  */


