Casa Editrice Esculapio - isbn 88-86524-64-1

Meccanica degli Azionamenti

Vol. 1 - Azionamenti Elettrici

G. Legnani, M. Tiboni, R. Adamini, D. Tosi

http://robotics.unibs.it giovanni.legnani@unibs.it

Errata Corrige del 22 settembre 2016 all'edizione aprile 2008

pagina	riferimento	errata	corrige
49	didascalia fig. 2.42	$C_m' = C_m \tau, C_r' = \tau C_m$	$C_m' = C_m/\tau, C_r' = \tau C_r$
61	10° riga	motore da 6 poli	motore da 2 poli
61	penultima eq.	$N_m \simeq N_0 - \frac{C_r}{K}$	$N_m \simeq N_0 - \frac{C_m}{K}$
83	penultima eq.	$N_m \simeq N_0 - \frac{C_r}{K}$ $\dots = \frac{\pi}{2} \frac{1}{0.083} = 9.46$	$N_m \simeq N_0 - \frac{C_m}{K}$ $\cdots = \frac{\pi}{2} \frac{1}{0.167} = 9.42 \qquad .$ (nelle eq. seguenti qualche valore numerico sarà leggermente diverso)
108	6° riga dal fondo	$AT_1 = DT_2$	$AT_1 = DT_3$
112	7° riga	profilo di accelerazione triangolare	profilo di velocità triangolare
324	fig. 12.1	f_sW_t	$W_t = f_s W_r$
328	6° riga	$(d_i \simeq \tau^3 d_u)$	$(d_i \simeq \sqrt[3]{\tau} d_u)$
329	7° riga	$\tau_i < 1/4 \div 1/5$	$\tau_i > 1/4 \div 1/5$
335	2° riga dopo eq. 12.28	(pari al modulo)	(pari a $\pi \cdot m$, con $m = \text{modulo}$)
342	§A.6 titolo	Opkinson	Hopkinson
344	§A.6.2 titolo e riga seguente	Opkinson	Hopkinson
477	eq. 12.11	t	$\frac{1}{\bar{k}_i} = \frac{\tau_i^2}{\bar{k}_{i-1}} + \frac{1}{k_i}$
		k_i è la rigidezza del riduttore i -esimo calcolata all'albero di uscita \bar{k}_i è la rigidezza equivalente dell'insieme di tutti i riduttori da 1 a i calcolata all'albero di uscita del riduttore i	