XXIII Ciclo di Dottorato di Ricerca in Meccanica Applicata *Relazione Finale*

Piezoelectric and high deformation mechanical devices: theoretical models and numerical simulations

Dottorando: Diego De Santis

Coordinatore:Prof. Giovanni LegnaniTutore:Prof. Rodolfo Faglia

Università degli Studi di Brescia

Facoltà di Ingegneria

Dipartimento di Ingegneria Meccanica e Industriale

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Diego De Santis

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Modelli e simulazioni per dispositivi deformabili (1)

Università degli Studì di Brescia Facoltà di Ingegneria Dipartimento di Ingegneria Meccanica e Industriale

Modelli e simulazioni per dispositivi deformabili (2)

Elementi deformabili estesi

- Trave con sezione rettangolare costante, incastrata e caricata con forza verticale costante.
- Si considerano solo gli effetti dovuti alla flessione, si trascurano taglio e azione assiale.
- La lunghezza dell'asse neutro rimane invariate.

- Noto $\rho = \rho(x)$ è possibile calcolare la deformata y=y(x) risolvendo la ODE

-Le funzioni incognite $h_1 = h_1(x)$, $h_2 = h_2(x)$, $\rho = \rho(x)$, y = y(x), sono riferite alla configurazione deformata e hanno per dominio $[0, L-\delta_h]$.

- A priori δ_h non è noto e quindi non è noto il dominio delle funzioni incognite.

Modelli e simulazioni per dispositivi deformabili (3)

Algoritmo per il calcolo della deformata con forza verticale costante

Università degli Studi di Brescia Facoltà di Ingegneria Dipartimento di Ingegneria Meccanica e Industriale

Modelli e simulazioni per dispositivi deformabili (4)

- Per testare l'algoritmo, è stata trovata la soluzione di una trave incastrata costituita da <u>materiale simmetrico elastico lineare (n=m=1)</u> in grandi deformazioni.
- La soluzione di una trave incastrata costituita da <u>materiale elastico non lineare assimmetrico</u> (n=m) in grandi deformazioni è stata trovata.

Material	E _t , E _c [Pa]	n, m
Aluminium alloy N.P.8	$4.557*10^8$	4.79

• $\delta_{h1} = \delta_h$ calcolati con l'algoritmo con MATLAB

F[N]	$\delta_{h1} [mm]$	$\delta_{h2} [mm]$	Difference [%]
0	0	0	0%
53.89	0.3711	0.3708	0.08%
72.00	5.351	5.314	0.69%
100.79	49.54	49.24	0.62%
116.51	84.16	83.84	0.38%

• $\delta_{h2} = \delta_h$ by Lewis, G. and Monasa, F., 1981 (n=m)

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Diego De Santis

Comportamento dinamico di bimorfi piezoelettrici (1)

Lamine piezoelettriche bimorfe

- Dispositivi piezoelettrici
- Abilità di produrre deformazioni flessionali
- Se richiesta elevata precisione, bisogna considerare la propagazione degli errori dei dati.

Ipotesi e modellazioni

- Lamina bimorfa appoggiata
- Problema bidimensionale
- Teoria delle travi di Timoshenko con deformazione tagliante
- Piccole deformazioni e tensore degli sforzi simmetrico

Università degli Studì di Brescia Facoltà di Ingegneria Dipartimento di Ingegneria Meccanica e Industriale

Comportamento dinamico di bimorfi piezoelettrici (2)

- Equilibrio meccanico: $\sigma_{1i,1} + \sigma_{3i,3} + f_i^b = \rho \ddot{u}_i, \quad i = 1,3$
- Teorema di Gauss:
 - $D_{1,1} + D_{3,3} = 0$
- Equazioni costitutive:

$$\sigma_{ij} = C_{ij}s_j - (-1)^r e_{ji}E_j, \quad D_i = (-1)^r e_{ij}s_j + \varepsilon_{ij}E_j$$

 $1/(2\mu_{ij}\Delta_z)$

 $\delta_{ii}(z_{ii})$

 $2 \mu_{ij} \Delta_z$

 $\mu_{ij} (1 - \Delta_z) \quad \mu_{ij}$

 $\mu_{ij} (1 + \Delta_z)$

Frequenze naturali

Errori

• Meccanici z_{ii}=C_{ii}

• Piezoelettrici z_{ii}=e_{ii}

• Elettrici z_{ij}=ε_{ij}

Comportamento dinamico di bimorfi piezoelettrici (3)

Gli errori sulle frequenze naturali dovuti ad errori meccanici (dC) sono nettamente preponderati rispetto a quelli dovuti ad errori elettrici (deps) e piezoelettirci (de).

Comportamento dinamico di bimorfi piezoelettrici (4)

Università degli Studi di Brescia

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Teoria del campo microcontinuo (1)

Attività svolta in collaborazione con il <u>Prof. Gianluigi Piardi</u>. Nell'ambito dei MEMS e dei microattuatori è stata cercata una teoria generale dei continui costituiti da microstruttura interna in grado di descriverne il comportamento in presenza iterazioni meccaniche, termiche e elettromagnetiche. La scelta è caduta della teoria "Microcontinuum Field Theories" di Eringen A.C.

MICROCONTINUO collezione continua di punti-particella deformabili

MICROPOLARI microcontinui con microparticelle rigide

- Per la comprensione della teoria sono necessarie competenze di calcolo tensoriale e conoscenza sui metodi di risoluzione delle PDE.
- Si è effettuata uno studio approfondito della teoria fisico-matematica ed è stata <u>conclusa</u> <u>la stesura di un testo didattico.</u>

Teoria del campo microcontinuo (2)

Sul piano applicativo la ricerca è stata indirizzata sulla determinazione della deformata e delle frequenze proprie di una piastra costituita da materiale micropolare, ignorando gli effetti termici.

Ogni microparticella può traslare lungo i tre assi e può ruotare attorno ad essi. I tre spostamenti sono raccolti nel vettore \boldsymbol{u} e le tre rotazioni nel vettore $\boldsymbol{\phi}$.

$$\boldsymbol{u} = \begin{bmatrix} u_x(x, y, t) \\ u_y(x, y, t) \\ u_z(x, y, t) \end{bmatrix} \qquad \boldsymbol{\phi} = \begin{bmatrix} \phi_x(x, y, t) \\ \phi_y(x, y, t) \\ \phi_z(x, y, t) \end{bmatrix}$$

- 2

Per trovare la soluzione si è applicato il metodo semi-inverso: è stata ipotizzata parte della soluzione, che dovrà poi essere compatibile con le equazioni che governano il problema. IPOTESI: 1) Vale l'ipotesi di piccoli spostamenti.

2) Le variabili indipendenti sono x, $y \in t$. Le derivate rispetto a z sono tutte nulle.

3) $u_x = u_y = 0.$

EQUAZIONI che governano i micropolari sotto l'ipotesi 1)

$$\sum \mathbf{F} = m\mathbf{a} \implies \lambda + 2\mu + \kappa \nabla \nabla \cdot \mathbf{u} - (\mu + \kappa) \nabla \wedge \nabla \wedge \mathbf{u} + \kappa \nabla \wedge \phi + \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{0}$$

$$\sum \mathbf{M}_0 = \mathbf{I}_0 \mathbf{\alpha} \implies \alpha + \beta + \gamma \nabla \nabla \cdot \phi - \gamma \nabla \wedge \nabla \wedge \phi + \kappa \nabla \wedge \mathbf{u} - 2\kappa \phi + \rho j \frac{\partial^2 \phi}{\partial t^2} = \mathbf{0}$$

X

Teoria del campo microcontinuo (3)

Le due equazioni vettoriali rappresentano un sistema a 6 PDF accoppiate, nelle 4 funzioni incognite ϕ_x , ϕ_y , ϕ_z , u_z .

Prima di procedere alla risoluzione numerica è necessario valutare se il problema è ben posto cioè che la soluzione esista e sia unica.

Per valutare l'esistenza e l'unicità della soluzione si è cercato di riscrive il sistema delle 6 PDE accoppiante in un sistema equivalente con 5 PDE indipendenti.

Ciò è stato possibile tramite l'applicazione del Teorema di rappresentazione delle funzioni vettoriali di Helmholtz. <u>,</u> Т

$$\boldsymbol{\phi} = \nabla \mathbf{A} + \nabla \wedge \boldsymbol{B} \quad con \quad \nabla \cdot \boldsymbol{B} = 0 \quad dove \quad \mathbf{A} = \mathbf{A}(x, y, t); \quad \boldsymbol{B} = \begin{bmatrix} B_x(x, y, t) \\ B_y(x, y, t) \\ B_z(x, y, t) \end{bmatrix}$$

A= Potenziale scalare
$$\boldsymbol{B} = \text{Potenziale vettoriale}$$

B = Potenziale vettoriale

Si è riusciti ad individuare 5 PDE indipendenti nelle 5 funzioni incognite u_z , B_x , B_y , B_z , A. Dopo avere trovato B_x , B_y , B_z , A, si calcolano ϕ_x , ϕ_y , ϕ_z .

Attività previste per il futuro:

- Definizione delle tipologie di vincolo della piastra
- Risoluzione numerica delle 5 PDE indipendenti per individuare le frequenze proprie.
- Definizione delle tipologie di carico e della relativa deformata.

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Attività collaterali di ricerca 2009-2010

- Collaborazione didattica nell'ambito del settore disciplinare di Meccanica Applicata alle Macchine.
- Correlazione alla tesi "Fondamenti della teoria dei microcontinui e loro applicazione ai corpi solidi", G. Bolpagni, Laurea di I livello in Ingegneria Meccanica, Novembre 2009
- Correlazione alla tesi "Lineamenti di treoria dei microcontinui" M.S. Mantelli, Laurea di I livello in Ingegneria Meccanica, Novembre 2010.

PUBBLICAZIONI

- Borboni, A., De Santis, D., Faglia, R., 2010, "Numerical Computation of Asymmetric Ludwick Cantilever Beam in Large Deformation", 16th US National Congress of Theoretical and Applied Mechanics June 27 - July 2, 2010, State College, Pennsylvania, USA (USNCTAM2010).
- Borboni, A., De Santis, D., Faglia, R., 2010, "Large Deflection of a Non-Linear, Elastic, Asymmetric Ludwick Cantilever Beam", ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ESDA2010 July 12-14, 2010, Istanbul, Turkey.

CONVEGNI

- 16th US National Congress of Theoretical and Applied Mechanics June 27 July 2, 2010, State College, Pennsylvania, USA (USNCTAM2010)
- 10th Biennial Conference on Engineering Systems Design and Analysis ESDA2010 July 12-14, 2010, Istanbul, Turkey

Modelli e simulazioni numeriche per dispositivi deformabili

Comportamento dinamico di lamine piezoelettriche bimorfe

Teoria del campo microcontinuo

Attività collaterali di ricerca

Sviluppi futuri

Sviluppi futuri

DISPOSITIVI DEFORMABILI E LAMINE BIMORFE PIEZOELETTRICHE

- Definizione di modelli con carichi differenti agenti singolarmente e combinati.
- Definizione di modelli con sezioni diverse dalla rettangolare e/o con sezione variabile.
- Definizione di una teoria unificatrice per le lamine piezoelettriche in grandi spostamenti
- Applicazione dei risultati al minirobot in fase di studio all'interno del Dipartimento di Meccanica Applicata e Industriale.
- Applicazione dei risultati per l'ottimizzazioni di parti elastiche deformabili usati in dispositivi destinati alla riabilitazione muscolare, in fase di studio all'interno del Dipartimento di Meccanica Applicata e Industriale.

MICROCONTINUI

- Risoluzione numerica delle PDE del modello della piastra.
- Applicazione del modello della piastra ad una membrana contenete microfori destinati al passaggio di fluidi.

XXIII Ciclo di Dottorato di Ricerca in Meccanica Applicata *Relazione Finale*

Piezoelectric and high deformation mechanical devices: theoretical models and numerical simulations

Dottorando: Diego De Santis

Coordinatore:Prof. Giovanni LegnaniTutore:Prof. Rodolfo Faglia

Università degli Studi di Brescia

Facoltà di Ingegneria

Dipartimento di Ingegneria Meccanica e Industriale

